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Introduction

Fast fracture induces rapid particle motions in the cracking body.
From the point of view of fracture mechanics such dynamic effects are of
particular interest in the immediate vicinity of the propagating crack tip,
where the fields of stress and deformation are critical for either con-
tinued fracture or for crack arrest.

A substantial body of literature has dealt with dynamic effects on
essentially brittle fracture, within the context of linear elastic fracture
mechanics. We mention review articles by Achenbach (1972), Freund (1975)
and Kanninen (1978). Dynamic effects in the presence of elastic-plastic
constitutive behavior have, however, been considered in only a few studies.

An investigation of the dynamic near-tip fields in an elastic perfectly-
plastic material was presented by Slepyan (1976), who considered both the
cases of anti-plane and in-plane strains. Dynamic near-tip effects in the
presence of strain hardening were investigated by Achenbach and Kanninen
(1978) on the basis of Jz flow theory. These authors found results which
are very similar to the ones obtained by Amazigo and Hutchinson (1977) for
the corresponding quasi-static problem. As shown by Achenbach, Burgers and
Dunayevsky (1979), for strain hardening the governing equations are elliptic
when the crack-tip speed is less than a certain critical value. The usual
separation-of-variables asymptotic analysis can then be carried out, which
yields singularities of the general type rp(-l < p <0) for the stresses
and the strains. As the crack-tip speed increases (or alternatively as the
strain-hardening curve becomes flatter) the nature of the governing equa-

tions becomes, however, hyperbolic, and the near-tip fields appear to.change
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character. Indeed in the limit of elastic perfectly-plastic behavior the
stresses become bounded and only some strains display singularities, as
shown in the present paper, and earlier by Slepyan (1976).

In this paper dynamic effects on near-tip fields are investigated for
elastic perfectly-plastic constitutive behavior. The approach is different
from the one employed by Slepyan (1976), but the results are identical for
the Mode-III case. For Mode-I the results show some differences. 1In the
present paper the stresses and the strains have been expressed in explicit
form, and they include higher order terms.

As the crack-tip speed decreases the expressions for the stresses reduce
to the ones for the corresponding quasi-static problem, as might be expected on
the basis of intuitive arguments. This is, however, not true for the strainms,
which become unbounded in the limit of vanishing crack-tip speed. A signi-
ficant difference between the dynamic and quasi-static solutions is that the
dynamic solution does not describe elastic unloading behind the crack tip.
These anomalies suggest that the transition from dynamic to quasi-static
conditions is non-uniform. It is speculated that the transition from the
dynamic to the quasi-static solution with decreasing crack-tip speed is
effected because the dynamic solution is asymptotically valid in a small
zone, which shrinks on the crack tip in the limit of vanishing crack-tip
speed.

1. Governing Equations

Both a stationary coordinate system with axes denoted by X, and a
moving coordinate system with axes denoted by (x,y,z) are considered. The
moving coordinate system has its origin at the propagating crack tip. The

geometry is shown in Fig. 1. 1In this section the equations governing the




motions of an elastic perfectly-plastic material are stated in the stationary
coordinate system. In the next sections these equations are simplified for
anti-plane strain and plane strain, for the special case of '"steady-state"
fields of stress and deformation relative to the moving crack tip.

Relative to the stationary coordinate system the equations of motion

are
S Bzu (1.1
OJ. ij e %y .

In the zone of plastic deformation the stresses are assumed to satisfy

the Tresca yield condition, which states that
o PRLR (1.2)

where ‘Tlmax is the maximum shear stress, and k is the yield stress in pure
shear. For an elastic perfectly plastic solid the total strain rates are
defined by

el

pl
3 =y e, F 2 v
’teij telj atei_] (i.3)

Here the elastic strain-rates are defined by

o i
L Rl (ataij T-v 5:°kk51j) (1.4)

while the plastic strain rates are
3 e =1 (1.5)

%1 ij

Equations (1.3) - (1.5) are the Prandtl-Reuss flow equations

o




In (1.4) p and v are the elastic shear modulus and Poisson's ratio,
respectively, while in (1.5) sij defines the stress deviator, and X is a
non-negative proportionality factor, which may vary in space and time.
Equations (1.1) - (l.5) should be supplemented by appropriate boundary
conditions.

The speed of the crack tip is v = dZ(t)/dt, where 2(t) is the mono-
tically increasing crack length, and where v(t) and dv/dt are continuous.
The moving and the stationary coordinate system are related by

X =x. = (&) €1.6)

1

By means of (1.6) the material time derivatives are transformed to the

moving coordinate system by the relationms

o d -5
:t( ) = = - V(t)=x £1.7)
\2 = i Y : 2 i + ;2 (1.8)
'.‘t( ) = 2 o v(t);‘x = V(t)at?ﬂﬁ v (t) 2 L3
ot %

For the case that v(t) approaches a constant value v_ as t increases,
it may be assumed that steady-state fields of stress and deformation
are established relative to the coordinate system moving with the crack
tip. This assumption implies that the time derivatives on the right-
hand sides of (1.7) and (1.8) may be neglected, which leads to the usual

results that

2
s TSRy W

Bt( ) i VQ Ax ’ ;C( ) VQ 4 2 (1.9a,b)
>4

In the sequel the speed of the crack tip will appear in the 'Mach

number'" M , which is defined as
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1

Mo=v_/(w/o)? (1.19)

1

L
where (a/2)* defines the velocity of shear waves in an elastic solid
with shear modulus w.

2. Crack-Propagation in Anti-Plane Strain

In the moving coordinate system (x,y,z), steady-state motion in anti-
plane strain is defined by a displacement w{x,y) in the z-direction. By

using (1.9b), the equation of motion (l.l) then reduces to

3 + A -gov a w=0 £2.1)

and the Prandtl-Reuss flow law (1.3) yields by using (1.9a)

A etae. g (2.3)
XX b X X2z Xz
A w=tAs _ ~2ha (2.4)
Xy b X yz vz

It is sufficient to consider the solution in the half-plane y = 0 .
The boundary conditions at y = 0 are

x <@ cyz =0 _ (2:.5)

x2 0 : ¢ S50 ,w=0 (2.6a,b)

The yield condition (2.2) is identically satisfied by

g = -k sinw, 0 _ =k cosw (2.7a,b)
Xz yz

By introducing the strain component

W= 3w (2.8)




together with (2.7a,b) in (2.1), and eliminating 2) from (2.3) and

(2.4), we obtain

Iy . A 2 v

cosw > w + sinw 2w + M F 3w =20 (2.9)
X v k xx

and

cosw AW + sinw 3w _+ k 2w =0 (2.10)
XX ¥ 5]

where M is defined by (1.10).

Equations (2.9) and (2.10) constitute a hyperbolic system of equations.
A brief study of (2.9) and (2.10), including a discussion of the charac-
teristic curves and the corresponding Riemann invariants has been pre-
sented by Achenbach, Burgers and Dunayevsky (1979). These authors showed
that a solution of (2.9)-(2.10) satisfying the boundary conditions (2.5)
and (2.6a,b) can be constructed by using only simple and uniform fields.
In the present paper we start off with so-called "Simple wave' solutions,

which are solutions for which the dependent variables are functions of

each other. a brief discussion of simple wave solutions is presented in
Appendix A.
It is easily verified that (2.9) and (2.10) are of the general form

given by (A.l), where

u; =W, and u, = L (2.11a,b)
while the components of the matrix L are defined by
gl
- p_
cotw E simn]
L (2.12)
E e cotw
W S1ny J

The characteristic directions follow from (A.7) as

—— r " et A
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dx M
f, = == 3 cof@ = = 2
= dy sinw

.13)

It follows from (A.8) that

dw dwx 2=

cotw = k/(wsinw)

LY

Substitution of (2.13) into (2.14) yields

(k/uM) dw €2.15)

for Y, : dw
i - X

Eor °f dw - (k/uM) dw (2.16)

X

These relations can easily be integrated to yield

LY
b

(k/aM) ® + w: (2.17)

b
[}

(o} :
for + X

for ¥_: w - (k/uM) w + w; (2.18)

X
+ - . .
where e and w  are constants of integration.
Equation (2.17) leads to a negative value of \. Hence we use oanly
the relation given by (2.18). Substitution of (2.18) into either (2.9)
or (2.10) gives

(cosw - M) 3w+ sinw 3w =0 {2.19)
X Vi

Along the family of characteristic curves defined by V_ , see (2.13),
(2.19) reduces todw =0 , i.e., w = constant. Consequently the re-

lations given by (2.13) for the V_ family can be integrated to yield

y - gesfe x = (6) (2.20)

where & is the polar angle defined by
tand = y/x , {21}

and ©(2) is an arbitrary function. However, by virtue of the boundary

B N R R AR TR RAR I I=,
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8
condition (2.6b) we must have ©(8) = 0 . Thus
e (2.22)
cosw - M
Equations (2.22) and (2.21) imply a relation between w and & ,
which can be solved to yield
2. : 2 2 = i
cosw = M sin & + (1l-M"sin"§)° cos® (2.23)
The stresses then follow from (2.7a,b) as
g, * =k :(1-‘."[zsir12€-,)}5 - M cos& sin€ (2.24)
cyz = :(1-Mzsir128)}5 cosé + M sinzéj {2.25)
Substitution of (2.23) into (2.18) yields
L PRl (k/uM) cos-l M sin25 + (l-wzsinze)icosez (2.26)
where we have taken w; = 0 to satisfy the boundary condition (2.6b).
From (2.10) we obtain
3w =de wiSEES, B L5, (2.27)
¥y X Xy wM sinw x = Ssinw x
where (2.18) has also been used, and wy is defined as
" = 3w/3dy (2.28)
Equation (2.27) can be integrated with respect to x, to yield
L & 1M 2 e 4
v. * o O 4n(1-M sin“6 - (1-M“sin“8)* cosé]
o 2 -1
- % 2a(14M sine + (1-M smze)}icose,.; + 1(y) (2.29)
where ¥(y) is an as yet undetermined function.
—— - A g | P i b R

B

i ‘ﬁ..




The function A(r,%) can be obtained from (2.24) - (2.26) and either

(2.3) or (2.4). After some manipulation we find

T 1*-5% (1 - Mzsi.nzt?;)}2 >0 (2.30)

which satisfies the essential condition on 1.

It is noted that the expression for < - given by (2.25) cannot satis-

fy the condition that cyz =0 at 8§ = 7 , as required by (2.5). This
sugzests that (2.23) - (2.30) are valid only in a domain 0 < & < e* .
while another solution holds for e* < 8 <7 ., This other solution cannot
be a simple wave solution, since no other than the one given by (2.23) -
(2.30) is available. A suitable solution for 6* < 8§ < 7 is, however,

given by a uniform field of the form:

w = constant, Vo = constant (231
Such a field clearly satisfies (2.9) and (2.10). An appropriate choice
for w is

w =1/2 , (2.32)
which, by virtue of (2.7a,b), leads to the following stresses for
6 56 s

O, ==k, L (2.33a,b)
Thus, the boundary condition (1.5) is satisfied. It immediately follows

*
from (2.23) and (2.32) that the angle 8 must satisfy the equation
* %* %*

M sinze + (1 - Mzsinze )k cos6 =0 (2.38)

Hence
* -
0" = - tan"! (1/m) (2.35)

* * o o o
Thus 6 varies from € =90 at M =0 to &6 = 135 at M =1 .

Substitution of (2.35) in (2.26) and (2.29), and the requirement

[ T T R R T T e o
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*
that the strains should be continuous at § = & leads to the following

*
results for € < 6 < 7 :

w

- nk/ \ 2.
3 k/2 u M ) (2.36)

w_ = y(y) {2.37)
- (y
Finally, an approximate expression for 4 (y) can be found from the
condition that wy should be bounded for y = 0, x ~ rp, where r_is the

length of the plastic zone. For small y the expression for wy given by

(2.29) then implies that

k 71- -M t
sy = K = ta(z /D) - IT tn(1-M) - 20 2 + 1 (2.38)

The results presented in this Section are essentially the same as
tgose found by Slepyan (19%) who used an approach in which only the most
singular terms , 0(l/r), were retained in the governing equationms.

For three values of M the stress components cxz’ given by (2.24), (2.33a),
and Oyz given by (2.25), (2.33b), have been plotted in Figs. 2 and 3, res-
pectively. The curves show a substantial dependence of the stresses on M.
For M = 0, (2.24) and (2.25) reduce to cxz = -k sinf® and cyz = k cosb ,
respectively, which are the expressions for the quasi-static stresses
derived by Chitaley and McClintock (1971). Thus, as one would perhaps
expect intuitively, the dynamic stresses reduce to the quasi-static ones in
the 1limit M - 0. This is, however,not true for the strains as discussed
later.

For 0 £ 6 < 9*, the strain (p/k)wx , which is given by (2.26), has

been plotted in Fig. 4. Again, a very noticeable dependence on M is

observed.

— e e o s W~




11

It follows from (2.29) and (2.38) that wy is singular at the crack

*
tip. In the domain 0 < 5 < 6 we find

2

1-M in(x/e) (2.39)

|
b M

¥

This result shows that wy not only becomes unbounded as r - 0 , but also
as M - 0. The strain component W is bounded as r — 0, but it becomes
unbounded in the limit M — 0. Thus, for the strains there is no uniform
transition fmomdynamic to quasi-static conditions.

In the loading zone the quasi-static solution is of the form
L Zn(r/rp)sine as ¥ — 0. Behind the crack tip the quasi-static solution -
shows a region of elastic unloading. As a material point passes the crack
tip, the increments of Vo change sign , and for the quasi-static case this
cah only be achieved by elastic unloading. For the asymptotically valid
dynamic solution presented in this paper the loading zone extends, however,
completely around the crack tip, even though different expressions hold for
0s6 < 6* and 6* < 6 < 7, respectively. It is speculated that the length
dimensions of the zone in which the present dynamic results are valid are of
order O(Mz). Outside of this zone another (dynamic) solution which does
describe unloading and which does show a uniform transition to the quasi-
static solution may occur.As M — O the dynamic zone then shrinks on the
crack tip, and in the limit M = O the zone has vanished altogether, and the
quasi-static solution describes the near-tip strains.

A final result of interest is the crack-opening angle. This angle,

which is defined by tan% a = lwx\ at 6 = nm , follows from (2.36) as

tan o = 2 tan L (/%) (2.40)

As M —- 0 we find o = m , which is in agreement with the quasi-static result.

B
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3. Crack-Propagation in Plane Strain

In the moving coordinate system (x,y,z), steady-state motion in plane
strain is defined by displacements u(x,y) and v(x,y) in the x- and y-
cirections, respectively. We assume that a, is the intermediate stress,
i.e., cx < Gz < cy. For the elastic case this is true, for the elast?c-
plastic problem it must be checked a posteriori. It was noted by Koiter
(1953), see also Geirlmge (1973, p. 514), that the Tresca yield condition

then implies that

PSS
at‘z ¢, = 0 3.1

The condition of plane strain consequently reduces to eil = 0 , which
by virtue of (l.4) yields the result

cz = v(cx + cy) (3.2)

We now introduce the following new variables

o =7 (9 - o) (3.3)
o = % (cx + cy + cz) (3.4)
u, = axu (3.5)
Ve = oy (3.6)

By the use of Eq.(3.2) it is then easily checked that the equations of

motion in the moving coordinate system may be expressed in the form

3 2
as, e TE™) L aycxy ~pN_ RE. =9 {3.7)
2o A 30+ 30 ~pY- B w0 (3.8)
Ty W)y X Xy = “x x :

Expressions for axcx and axey follow from the Prandtl- Reuss flow equa-




" iﬁ "‘:3,‘r~“"v" S e e Sy ™ o

tions (1.3). By considering Bx(ex-ey) we find

By = %8, = (2Mw ) o - (Us) 39 (3.9)

Similarly the relation for axexy yields

A = = 2 ~
vax + “yux (ZA/vm) cxy + (1/w) axbxy (3.10)

For plane strain the Tresca yield condition can be expressed in the
form

o+ =k (3.11)

x <@ : c =0, g =0 (3.12)
y xy

x 20 : v=20, ny =0 (3.13)

It is noted that the yield condition (3.11) is satisfied identically
by
¢ = -k cosw (3.14)
cxy = - k sinw (3.15)

By introducing these expressions in (3.7) - (3.10), and subsequently

eliminating (l/vm) we arrive at a system of equations of the general form

bR +—=0, (3.16)
jel ij ax 3y

where
u; = w, u, =0, uy =u o, o = Vs L BB o

and the matrix L with components L,, is defined by

ij

13




i 3 M
s T 2k(1+v)cosw k cosw 0
_st 1+\/! % 2 2 Z \ 2
3 cosw tanw 53(1+V)M tanw -3 p(1+v)M
o (3.18)
B o) 3(1-2v)
B cosw (1) o - 2 tanw 1
0 ] 3(1-2v) : "
. 2u(14) J

Equation (3.16) is of the general form stated by Eq.(A.l) of Appendix
A. Just as for the anti-plane case we seek simple wave solutions of Eq.
(3.16). Unfortunately, for the plane strain case the system is too compli-
cated to yield an analytical solution. It is, however, possible to obtain
simple wave solutions for small values of M, where M is defined by (1.10),
by using a perturbation method which is discussed in some detail in
Appendix B.

Expressions for the characteristic directions Y = dx/dy at small
values of M are given by (B.17) and (B.18). The relevant characteristic

direction for y 2 0 is

Y(l) o l-sinw
3 cosw \1+sinw

%
0 ) +O(M2) (3.19)

where w depends analytically om M.

As discussed in Appendix B, the following relations on the characteristic

curves defined by Ygl) are obtained:

g = - %k (1) & + 0, + o(Mz) (3.20)
a =K 200 (wstne )T - w408+ 00d) (3.21)

e vy
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y - "y (1-v) “(l-sinw ) +-vx + 0O(M7) (3.22)
Substitution of (3.20)-(3.22) into the first of (3.16) yields

[l-sim -M( 1-v \%} Aw +dw =0 (3 23)

cosw \l+simw / “x “y 4
Along the family of characteristic curves defined by Vgl), (3.23)
reduces to dw = 0 , i.e., w = constant.. Consequently the relation (3.19)
given by Ygl) = dx/dy , can be integrated to yield
g [l-sinw - 1Y )35] o it (3.2%)
cosw T \l4simnw y :

where ©(6) is an arbitrary function of the polar angle 6. For the appli-
cation at hand the appropriate choice is ©w(8) = 0 for a central field of
characteristics.

Equations (3.24) and (2.21) now yield the following relations

r St 2 2
simw = - cos286 - M L2(1-v) |° sin® sin26 + O(M") (3.25)
. i 5 . 2

cosw = sin2€ - M [2(1-v)]™ sinb cos26 + O(M") (3.26)

and hence
i L 2
w =208 - 3 - M [2(1-v)]* sin® + O(M") (3.27)
Substitution of this result into (3.14) and (3.15) yields
cxy =k {cos20 + M E2(1-v)1% sin6 sin26} (3.28)
o =k {-sin286 + M [2(1-v)1% sin€ cos26} (3.29)

The average pressure follows from (3.21) as

c=0_ - %k(lw) {28 - g - i [2(1-v) 1% sine} + oov?) (3.30)

Sarmss

e s

i
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By combining (3.2), (3.3) and (3.4) we find

S 3¢
X 7. 2(1+v)

Q
[}

— n in26 | r 1 : 2
2(12”) + k 3 -26-51n29/ + Mk _Z(I-v);% cos@ sin26 + 0(M") (3.31)

Q
"

Y (\g -26+sin26;1+ Mk [2(1-v) 17 sin’s + 00fd) (3.32)

= _3_2 - & E - F - 1% i 2
S, = Tm T, 2k {28 7 - Ml2(1-v)] sing} + o) (3.33)

In these expressions the constant co is still undetermined. Additional
relations can, however, be obtained from the boundary conditions (3.12) and
(3.13). Clearly (3.28) and (3.32) can neither satisfy the conditions stated
by (3.12) nor by (3.13) which suggests that (3.28) - (3.33) are valid only
in a domain 9: <0 < 6: , while other solutions hold for 0 < 6§ < G* and

1
*
62 < 8 < ., Appropriate solution for the latter domains are again constant

states.
* *
For both 0 < 8§ < 91 and 92 < 8 < T constant states imply cxy =0.
*
Equation (3.28) and the condition that ny should be continuous at & = 31

*
and ¢ = 62 then yields the equation

* r ,g * *
cos26 + M L2(l-v)|® sin® sin28 =0 (3.34)

which to first order in M has the solutions

*

9, = % + %(1--\»)1‘s M+ O(MZ) (3.35)
* L 3m, 1 % 2

62 . + 2 (1-v)°" M+ O(M) (3.36)

-
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On the basis of Eq.(3.32), the condition that 8 should vanish at & = 6:
vields
3Co
T+ - (Hmk (3.37)
The complete stress fields in the constant state regions then are easily
computed. In summary:
0sesa.
1"
ny =0 (3.38)
c, = k(2#m  + oy > 0 (3.39)
2
g km + oM7) (3.40)
o, = 2vk(1+m) (3.41)
L% i 6*
%1 EC) 2
ey = 0 cy =@ 3 g~ 2k cz = 2vk (3.42a,%,c,d)
We now proceed with the computation of the strains. In the sector
*
6: <0 < 62 we obtain by substituting (3.27) into (3.21) and (3.22)
g aate Basli LBy o 12k - ok
€ "o =a + v;(ZS 20+ u'(1 v) sin28 ¥ L2(1-v)1® sin® (3.43)
o k 2 12k -3
Yy vy “ 2;(1 v) sin" 6 + oo [2(1-v)1® cos® (3.44)
By using the relation
5 2(14+V)p
S = 3¢1-2v) Cx T &) (3.45)
in conjunction with (3.30) and (3.43), ey follows as
o k k m 1 2k - 1% ~
= -+ - - - - - - - — — -
sy u “(1 2v) (1+m) u(1 v) (26 2) + 5 L2(1-v).*° sins
5 5(1-\;) sin26 (3.46)
;
:
:,'-s:."% e — T 3
O T ——— e




Next, consider (3.16) for i = 3, and eliminate “tt:/‘?:ut,?t.x‘c 2x and ?Vx'Ex by

using (3.20) - (3.22). The result is

3  du > W %
Him = e 3 (312

where f(w) can easily be determined. Equation (3.47) can now be integrated
with respect to x, and w can subsequently be eliminated by using (3.27).

The result of these manipulations is

% [2(1-\1)1}5 lcosd + Zn(tan g)]

(=4
U}
'

EEn(Zsinze) 2 2%(1-@ L +&1-

+ 2¢(y) (3.48)
Here ¥(0) = 0, but otherwise ¥(y) is an arbitrary function. The strain

component exy then follows from (3.44) and (3.47) as

BN T k_ arh Lk r o 1E T ' 8y
sxy u(l-/) cos26 % Zn(2sin"8) + Mo _2(1-v)]*® L2cos® + in{tan Z)J
1
e 3 u: + ¥ (y) (3.49)
*
At 8 = 61 , Eq.(3.44) yields
v. =v2 +1 3% 4 000 (3.50)
x x M L :

* *
Since Vo is continuous at 8 = 6 , and uniform in the domain 0 < 6 < 81 -
and since by symmetry considerations v, must vanish at 6 = 0, it follows
that

v, = - %12—::(1-\))% + 0M) (3.51)

x*
By evaluating (3.43), (3.46) and (3.49) at & = 61 we then obtain for

OSGS"*
vl.

g, = -
X b 4 M

2k ..yt (3.52)
Y




1

g = u’ . i<-(1-2»)(]:‘Ir'-‘.") + ! 25(l-'J)§ (3.53)
b4 ta M

€ = 4(y) (3.54)
Xy

A computation of u; can be based on the assumption that at = 0
the domain of validity of (3.52) - (3.54) borders directly on the zone of
elastic deformation, and that sx, ev and :x are continuous at the elastic-
plastic boundary . If in the plastic zone a is represented by (3.40), and

outside the plastic zone cx is computed by using Hooke's law with . and ‘y

as defined by (3.52) and (3.53), then continuity of T yields

2k 5

SegEawm+EG - vam] (3.55)

a =
X

e B

*
The strains in the domain 0 s 8 < 8 then reduced to

-5, ]
c = " Lz (14 ] (3.56)
e =X (24 (1-v)(1+m] (3.57)
y w2 :

By evaluating (3.43), (3.46) and (3.49) at & = 6* , and using (3.51)

*
and (3.55) we find for 6, s 8 s 7 :

2
c =§ 2 -1+ (1-vi/2] (3.58)
c, = £ 03+ (1-v) (4-/2)/2] (3.59)
oy = ;1137.(1-\;)% . -':-(1-\))(1-1/&) +§- (2(1-v)1¥ Za(tan37/8) + ¥(y) (3.60)

The crack opening angle, which is defined by tana 4vi|, follows from (3.44) by

*
substituting € = 92. The result is

- LAk ¥
tano M “(1 V) (3.61)

-

O

" 3.“6 s VT v

it




The expressions for the stresses given by (3.31)-(3.33) show only a
weak dependence on M. In the limit of vanishing crack-tip speed (M—0)
these expressions reduce to the corresponding quasi-static results as,
for example, presented by Rice and Tracey (1973). 1In the range

* *
g, <§ < 62 , the strains, given by (3.43), (3.46) and (3.49) strongly

1

depend on M due to the presence of terms of order O(M-l). The strain
€ and ey have been plotted in Figs. 5 and 6 for M = 0.1 and M = 0.01.
In the limit M — O the strairs become unbounded.

The results presented in this section do not show elastic unloading.
For the quasi-static problem it has been shown by Rice, Drugan and Sham
(1979) that an elastic unloading zone must exist in the immediate vicinity
of the crack tip.

Thus, the near-tip in-plane asymptotic results presented in this
Section, which take into account dynamic effects, display the same anomalies
that were observed in Section 2 for the case of anti-plane strain. There
is no uniform transition from the dynamic to the quasi-static results as the
crack-tip speed becomes very small, and the dynamic solutions do not show
elastic unloading in the immediate vicinity of the crack tip. Just as for
the Mode-III case it is speculated that the actual transition from dynamic

to quasi-static results is achieved because the zone of validity of the

results of this section shrinks on the crack tip in the limit M — 0.
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APPENDIX A

Simple Wave Solutions

The systems of equations that appear in this paper are of the general

form
n =u, *u
T L, = +—==0 e - W (A.1)
2 p & X Q
=1 M y

Equation (A.l) defines a system of n simultaneous first-order partial

differential equations for the dependent variables Uy, = = = =, U .

The equations are homogeneous, and Lij are functions of x,y and u; but

not of the derivatives of the ;. Such equations are called quasi-linear.
As discussed by e.g. Bland (1969) solutions of Eq.(A.l) are simple wave

solutions if all the ug are functions of one another, or equivalently,

if all u; are functions of another variable, say © . For u, = ui(c) we

have
Au Au du
i = 2 ﬁ —‘ i = 4 ﬁ 2 = —i
e Oy ooy o = ug 3y ° where ug ac (A.2)

Equation (A.l) can then be rewritten as

n -
1 X0 -
\‘§=1 Lo St 95y " O (A.3)

Along any curve in the xy-plane we have
x X
dx X + dy > = do (A.4)

Hence Eq.(A.3) define total differentials along curves defined by

o n
pAES T | N~

y.d_X.tlijj.i‘liJJ (A.5)
dy dz dui y

Equations (A.3) are true for all values of i, and therefore, the right-




hand side of Eq.(A.5) is the same for all values of i. Hence

(Lyy =¥ 8;,) duy =0 Ll 2, . o (A.6)

This system of equations has non-trivial solutions only if the determinant
of the coefficients vanishes, i.e., if
‘Lij -V 513']* =0 (A.7)

Equations (A.7) is recognized as the equation for the slopes Y = dx/dy
of the characteristics.

The relations holding on a characteristic of a simple wave follow
from Eqs.(A.6). Since the duj are the right eigenvectors of Lij - Y iij’
they are proportional to the cofactors of any row of Lij - Y sij 5
provided that such cofactors are not all zero. Thus we have

du du du

1 2 n
— I — O e @ ow e I ee— (A.S)

S EOe “a

where Ci , 1 =1,2 -« = = -, n, are such cofactors.
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APPENDIX B
Perturbation Method
The system of governing equations for the case of plane strain, given
by (3.16), is of the general form (A.l). We again seek simple wave
solutions. Formally the equation for the characteristic curves is given
by Eq.(A.7). This equation is, however, much too complicated to be solved
analytically. Thus, it was attempted to obtain simple wave solutions for
small values of M, where M is defined by (1.20). i
For M = 0 , the fourth-order equation given by (A.7), with Lij defined
by (3.18) yields the following double roots:
o
o l+sinw
Y17 T Tcose (3.1
o
o l-sinw
¥3 cosw® (B.2)




<5

Here the superscripts zero indicate that M = 0 . The multiplicity of
the roots necessitates some special provisions before a perturbation
procedure can be attempted. If expansions for small M were directly
substituted in (A.7) the result would be a perturbation of (B.l) and
(B.2), while the two other different roots would not be obtained. This
difficulty can be circumvented by preceding the perturbation procedure
by a transformation which would reduce Lij at M = 0 to the following

canonical or Jordan form:*

~ (o] & N
_ l+sinw 1 0 0 )
o]
| cosy
i 1+sina°
. 0 = — O :
i ol O
sing
; i
o H
Lij (B.3)
i o
Lo 0 I‘Si’:" 1
i sin®
1
i 1-sinw’
; 0 0 0 ‘———:r— J
“ sinw

For the case of multiple eigenvalues formal methods are available to
reduce a matrix to its canonical form. Here it suffices to state the
transition to the Jordan representation can be achieved by introducing

the new variables %, G, Gx and Gx by the following substitutions

b1 A b 1 2
dw ol c + £ 1-v dvx (B.4)
Z 1+v .~ 2 4 .=
do = - 3 % 1oy do - 3P av "% (B.5)
du e o Ai8i00 .o N s  losdme 0 N o (B. 6)
x cosw 1-v cos X -V X
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dv_ = do + d¥ (B.7)
X X
For the purposes of the prturbation procedure we introduce in addition

Veldt . do=

1 9V, dé (B.8)

1
M
With the substitutions (B.4) - (B.8) the system of equations corresponding

to (A.6) becomes

2 2
o2 1+sinw] - v oM o
- [Y + (1 - 2 M) . dw + M(1 T T sinw) do +
2 3
v 2 l-sinw .- v M o
+ 3 p s U 12 sinw de =0 (B.9)

l-v ~ [ v 2, l+sinw ¥ 2 lislop o~

H l-simw e Ll Lo 2 M) cosw ] dc 2 & cosw dvx . (8.10)
23

X e VB i s

2 cosw l1-v 2

l-sinw V2 ~ v2 Mz iz

+[V+W(1-EM)]dux+M(l+—_;-2—51nw)de=0 (B.11)
v 2 l-sinw 1-v & [_ l-sinw M ] P
FH S s E L ey e S s oW -0 (B.12)

The canonical form sz given by (B.3) is recognized as appearing in the
limit M = 0.

At this stage we can consider expansions in terms of powers of M:

1)

v = v° 4+ i v€ (B.13)
L, = L:j + M LS) (B.14)

together with analogous expansions for dw, do, dﬁx and d\;x, while w is

assumed to depend analytically on M.




On the basis of Eq.(A.7) we obtain in the zero'th approximation the
results given by (B.l) and (B.2). Considerations based on (A.8) yield

the following relations along the characteristics

F (o]
du ==ﬁ'g_dv g dg =doc =0 (B.ls)
b'd o X
cosw

The first order approximations are obtained as

%

w£1) l+sinw { . 1=u X 2

v e

1,2 M AT, o) 546

cosw 3
v(1) _ losinw M ( 1-v >% 2 (B.17)
3,4 " \Tesina/ + 0O 4
cosw
The eigenvectors corresponding to Yil) lead to the following relations
~ = ~ l-v 5 ~
dh 2@ =0 ,d5 = ——) aé (B.18)

X X l-sinw

In terms of the original variables we find

3 do
4o = 2% T (B.19)
k 5 1 kvl
e | == 1= Sl .20
dux [H-M (1-v)* (l+sinw) s dw (B.20)
dv, = - km (1-)¥ (1-sing)¥ dw (B.21)
These expressions can easily be integrated. In the following we list
not only the expressions corresponding to Vil) (upper signs), but also
the ones corresponding to Yil) (lower signs):
2 k
u =z ;ﬁ (1.-\))5j (1L # sinm)% F E— w + u: (B.22)




k (1+v) w + g,

wiro

k c = =

v = - % (1-n)¥ (1 £ sinw)®

o
+v
X
| o o -
where b 30 and vx are arbitrary constants.

It is of interest to determine » from the relation

Dkr ~ —— (- sing 3

v J.u
P o gevx+ cosb 3| x )

Corresponding to V§1) and Yil) we find

: -5
TR | (7 =) 4 s }11"‘ <0
b

Analogously, we find corresponding to Vél)(upper sign) and V§1)

(lower sign)

2
' g =z 3 k (1 +vVv)w+ %
Ef2 5 . 1% 5 . ] o
ux + S [M (1 =zVv)" (IF sinw)*° F vwl|+ ux

vx = Eﬁ (l-v)% L = sinn)% + v:

%
\r~-EA1-_Vu_>0

wM

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(3.28)

(B.29)

(B.30)
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Fig. 1 Propagating crack tip with stationary and moving
coordinate systems
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Fig. 2 Dimensionless shear stress, cxz/k, versus o for various

crack-tip speeds; k = yield stress in pure shear; - - -

quasi-static solution.
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Dimensionless shear stress, cyz/k, versus & for various crack-tip
speeds; k = yield stress in pure shear; - - - quasi-static

solution.
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Fig. 4 Engineering shear strain (u./k)wx versus 8 in the range

0s6s G*, for various crack-tip speeds.
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Fig. 5 Strain €, versus 8 for two crack-tip speeds; v = 0.3.
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Fig. 6 Strain ‘y versus 6 for two crack-tip speeds; v = 0.3.




